
SLUG Fest 2013

Introduction to Classes

John Hanna jehanna@optonline.net www.johnhanna.us

Classes

Classes provide a means of encapsulating objects with data and member functions similar to Java

programming. Working with classes requires a ‘different’ way of thinking about programming: nouns

rather than verbs. Rather than ‘move the circle’ we think – ‘tell the circle to move’.

Here’s a complete (but not very interesting) Lua example:

circle = class() -- the name of the class is circle

function circle:init(cx, cy, radius) -- called when a circle

 -- object is created

 self.x = cx

 self.y = cy

 self.r = radius

end

function circle:paint(gc) -- the routine to draw the circle

 gc:drawArc(self.x, self.y, self.r, self.r, 0, 360)

end

c = circle(50, 50, 50) -- c is a circle object

function on.paint(gc)

 c:paint(gc)

end

Some big ideas:

From the Java Tutorial: A class is the blueprint from which individual objects are created.

From Wikipedia: In object-oriented programming, a class is a construct that is used to

create instances of itself – referred to as class instances, class objects, instance objects or

simply objects. A class defines constituent members which enable its instances to have state and

behavior. Data field members (member variables or instance variables) enable a class instance to

maintain state. Other kinds of members, especially methods, enable the behavior of class instances.

Classes define the type of their instances. A class usually represents a noun, such as a person, place or

thing. For example, a "Banana" class would represent the properties and functionality of bananas in

general. A single, particular banana called “Hanna” would be an instance of the "Banana" class, an

object of the type "Banana".

The class is only an abstract idea or plan. It is not a variable. The class definition can contain variables

and ‘member’ functions.

The main difference between TI-BASIC programming and Lua programming is the way the user interaction is

turned inside out. BASIC programs are in control: they read input from users and display results whenever their

logic dictates. Lua scripts, on the other hand, are reactive. They may only accept input in response to events

such as key presses. And they only display results indirectly in response to the system requesting a repaint. It

takes a new way of thinking to write programs in this fashion.

-John Powers 1/14/13

SLUG Fest 2013

Introduction to Classes

John Hanna jehanna@optonline.net www.johnhanna.us

A powerful idea: ‘dynamic variables’

Objects can be created ‘on the fly’ while the program is running and can ‘respond’ to events like mouse

clicks and mouse movements…

-- the circle class definition --

circle=class()

function circle:init(x,y,r)

 self.x=x

 self.y=y

 self.r=r

end

function circle:paint(gc)

 gc:drawArc(self.x-self.r,self.y-self.r,2*self.r,2*self.r,0,360)

end

-- end of the circle class --

-- make a circle object --

c = circle(50,50,20)

-- make a list of objects --

list = {c}

function on.paint(gc)

 for i=1,#list do

 obj=list[i]

 obj:paint(gc)

 end

end

-- when you click the mouse, make another circle --

function on.mouseDown(x,y)

 c = circle(x,y,20)

 table.insert(list,c)

 platform.window:invalidate()

end

SLUG Fest 2013

Introduction to Classes

John Hanna jehanna@optonline.net www.johnhanna.us

Click ‘n Drag

The final demo illustrates a technique for clicking and dragging an object.

-- the circle class definition --

circle=class()

selectedObject = nil

function circle:init(x,y,r)

 self.x=x

 self.y=y

 self.r=r

end

function circle:contains(x,y)

 if (x-self.x)^2 + (y-self.y)^2 < self.r^2 then

 selectedObject = self

 end

end

function circle:paint(gc)

 gc:drawArc(self.x-self.r,self.y-self.r,2*self.r,2*self.r,0,360)

end

-- end of the circle class --

-- make a circle object --

c = circle(150,50,20)

c2 = circle(75,80,10)

c3 = circle(180,100,15)

-- make a list of objects --

list={c, c2, c3}

function on.paint(gc)

 for i=1,#list do

 obj = list[i]

 obj:paint(gc)

 end

end

function on.mouseDown(x,y)

 for i=1,#list do

 obj=list[i]

 if obj:contains(x,y) then

 selectedObject = obj

 end

 end

end

function on.mouseMove(x,y)

 if selectedObject ~= nil then

 selectedObject.x = x

 selectedObject.y = y

 end

end

function on.mouseUp(x,y)

 selectedObject = nil

end

